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Abstract— In this paper, we study the problem of sparse signal inevitably incurs errors. In this paper, we propose an imgdo
recovery when partial but partly erroneous prior knowledge hjerarchical prior model. The proposed modeling constitu
of the signal’'s support is available. Based on the conventional three-layer hierarchical form. The first two layers, simila

sparse Bayesian learning framework, we propose an improved th ti | B ian | . I G .
hierarchical prior model. The proposed modeling constitutes a € convenlional sparse bayesian [earning, place a Ladssia

three-layer hierarchical form. The first two layers, similar to the inverse-Gamma prior on the signal, while the third layer is
conventional sparse Bayesian learning, place a Gaussian-inverse-newly added with a prior placed on the parametébs}.

Gamma prior on the signal, while the third layer is newly added, Such a modeling enables to distinguish the true support from
with a prior placed on the parameters {b;}, where {b;} are pa- ar-oneous support through learning the values{iaf. We

rameters characterizing the sparsity-controlling hyperparameters - .
{a:}. Such a modeling enables to automatically learn the true '€SOrt tO the variational inference methodology to perftine

support from partly erroneous information through learning the ~ Bayesian inference on the proposed three-stage hieratchic
values of the parameters{b;}. A variational Bayesian inference model, and develop a new sparse Bayesian learning method

algorithm is developed based on the proposed prior model. which has the ability to distinguish the true support frora th
Numerical results are provided to illustrate the performance of erroneous information.

the proposed algorithm.
Index Terms— Compressed sensing, sparse Bayesian learning,

prior support knowledge. Il. HIERARCHICAL PRIOR MODEL

|. INTRODUCTION We consider the problem of recovering a sparse signal
We study the problem of sparse signal recovery when pril&” from noise-corrupted measurements
information on the signal’'s partial support is available. |
practice, prior information about the support region of the y=Az+w Q)
sparse signal may be obtained from the support estimate of
the previous time instant. This is particularly the case favhere A € R™*™ (m < n) is the measurement matrix, and
time-varying sparse signals whose support changes slowdyis the additive multivariate Gaussian noise with zero mean
over time. For example, in the real-time dynamic MRI reand covariance matrix®I. Suppose we have partial but partly
construction, it was shown that the support of a medic@rroneous knowledge of the support of the sparse signghe
image sequence undergoes a small variation with the supp@ier knowledgeP can be divided into two parts? = S U
changes (number of additions and removals) less #arof E, whereS denotes the subset containing correct information
the support size. The problem of sparse signal recovery wihout the support and denotes the error subset. If we [Et
partial support information was studied in several indejgen  denote the true support af and 7 denote the complement
and parallel works [1]-[3]. It has been observed by extensi@f the setT’, i.e. TUT* = {1,2,...,n}, then we haves C 7,
experiments [1]-[3] that the sparse recovery performamee cand E C T°. Note that the only prior information we have is
be significantly improved through exploiting the prior sopp . The partition ofS and £ is unknown to us.
knowledge. Nevertheless, this performance improvement ca We develop a sparse signal recovery algorithm which has
only be achieved when the prior knowledge of the signalthe ability to distinguish the correct support from errongo
partial support is fairly accurate. Existing methods, €I~ information and thus can exploit the prior support inforioit
[3], suffer from severe recovery performance degradation im a more constructive way. To this objective, we will propos
even recovery failure in the presence of inaccurate priomkn a new hierarchical sparse Bayesian learning (SBL) model
edge. In practice, however, the estimate of the signal'pastip which allows to learn the correct information from the partl
. . . . . erroneous knowledge. Before we proceed, we first provide a
This work was supported In part by the National Science Fatiad of brief overview of the hierarchical model for the conventibn
China under Grant 61201274, and the National Science Fdiondander
Grant ECCS-0901066. SBL method.



A. Overview of Hierarchical Models for Conventional SBL The above modified hierarchical model effectively integsat

In the conventional sparse Bayesian learning framework 12 prior support information into the sparse Bayesiamiear
two-layer hierarchical prior model was proposed to promofeé2mework. Nevertheless, the modified two-layer hierasahi

Gaussian prior distribution to learn and adapt to the true situation. To address thig,jssu
n we partition the parameter®;} into two subsets{b;,Vi €
p(z|a) = HP(T/HOM) ) P}, and{b;,Vi € P°}, whereP° denote the complement &f,
pale} ie. PUPc={1,2...,n}. For{b;,Vi € P°}, the parameters

_ ) are still considered to be deterministic and assigned a very
wherep(z;|a;) = N(z;]0,a; '), anda £ {;}, the inverse small value, i.e.

variance (precision) of the Gaussian distribution, are-non .
negative hyperparameters. The second layer specifies Gamma b; =10~ Vi € P° (6)

distributions as hyperpriors over the hyperparamefer$, i.e. Fqr {b:,Vi € P}, instead of assigning a fixed large value, we

n n model them as random parameters and place hyperpriors over
p(a) = [[ Gammaa,la,b) = [[T(a)"0%af'e ™™ (3) {1, vi ¢ P}. Since{b;,Vi € P} are expected to be positive
=1 =1 values, suitable priors ovefb;,Vi € P} are also Gamma
wherel'(a) = [;° t*~te~"dt is the Gamma function, the pa-distributions:
rameterss andb used to characterize the Gamma distribution ] _ —1 _ppp—1_—qb; .
are chosen to be very small values, €l§4, in order to Gammabilp,q) = I(p)~q"b; e vier (1)
provide non-informative hyperpriors ovéry;}. As discussed Where p and ¢ are parameters characterizing the Gamma
in [5], using a non-informative hyperprior allows to become distribution. Their choice will be specified later in thispea
arbitrarily large. As a consequence, the associated ciseffic In doing this way, the modeling constitutes a three-layerdr
z; will be driven to zero, thus yielding a sparse solutiorghical form which allows to learn the parametgts, Vi € P}
This mechanism is also referred to as the “automatic retevarin an automatic manner from the data, and therefore has
determination” mechanism which tends to switch off most dhe ability to distinguish the correct support from errongo
the coefficients that are deemed to be irrelevant, and orelp kénformation.
very few relevant coefficients to explain the data. 1. VARIATIONAL BAYESIAN INFERENCE

B. Proposed Hierarchical Models We now proceed to perform variational Bayesian inference

When the value of the parametbris re'ative'y |arge, e_g_ based on the proposed hiel’al’Chica| m0de|. For notational
b =1, it can be readily observed from (3) that the hyperpriof@nvenience, define
are no longer non-informative and now they encourage small
values of{a;}. In this case, an arbitrarily large value of . . . ]
is prohibited. As a result, the formulation of the two layeF©!lowing the conventional sparse Bayesian learning frame
hierarchical model does not result in a sparsity-encongagi VoK [3], we place a Gamma hyperprior over
prior.and therefore does n_ot qecessarily lead to a sparse p(7) = Gammdrylc,d) = T'(¢) " tdey~te™ D (8)
solution. This fact, however, inspires us to develop a new Wevhere the parameters and d are set to small values. e
to incorporate the prior support information into the sparsc g 1072 » €0
B oo ot ag 1o Lot 0 £ (.00, F), whereh & (v € ) ar e

P yperp tJ Y variables as well since they are assigned hyperpriors aad ne

Zmﬁ)lgy an individual parameter; for each hyperparameterto be learned. We assume posterior independence among the
v hidden variablese, «, v, andb, i.e.

n n
p(a) = H Gammaai‘aa bl) = H F(a)_lb?ag_le_bial p(wv o, 7, B|y) %q(xa «, 7, B)
=1

1=1
4)
Such a formulation allows us to assign different priors
different coefficients. If a partial knowledge of the sigsal
support,P, is available, then the associated parametefdgf
can be set to a relatively large value, say 1, in order to pIaX%
a non-sparsity-encouraging prior on the corresponding[fieoeg'veS

vEo

=z (m)Qa (a)Q"/ (V)QI;(b) )

tXVith this mean field approximation, the posterior distribot

of each hidden variable can be computed by minimizing
the Kullback-Leibler (KL) divergence while keeping other
riables fixed using their most recent distributions, \hic

cients, whereas the rest parameters{igf; are still assigned  Ing,(x) :<1np(y,:13,a,'\/,B)>qa(a)qw(7)q5(5) + constant
—4 .. _

;small value, say0~*, to encourage sparse coefficients, that | ga(0) =(Inp(y, @, @, 7, b))y, (@)q, (v)q;B) T CONStaNt

, e iep - gy (v) =(np(y, T, 0,7, b)), (@), (a);(5) T+ CONSANt

‘" 1107* otherwise In g(b) =(Inp(y, T, @, 7, b)), ()q. (a)q, () T CONSaNt



Details of this Bayesian inference scheme are providedabelavhere

1). Update of ¢, (x): The variational optimization of, ()

can be calculated as follows by ignoring the terms that are

independent oft:

Ing(z) oc(Inp(y|z,v) + Inp(z|a))q, (a)e, ()

()

~ 7m +

‘T

. 1

d=d+ {(y — Az)" (y — AT))y, () (18)

in which

O<—7(1;—z‘lfﬂ)T(y—x‘h@—%CBT<D>90 (10) <(yan:)T(yfAm)>qm(w):Hy*AuH%Hr{ATAé}
b

We can easily verify thaj(x) follows a Gaussian distribution  4). Update of ¢;(b): The variational optimization of;(b)

with its meany and covariance matri® given respectively yields:

as
p=(n®A"y

o= (()AT4+ (D)) (1)

2). Update of ¢, (a): Similarly, the approximate posterior

g~ () can be computed as

In go (@) x(Inp(x|e) + Inp(ela, b)), ()4 (5)
= Z <(a — 05) Ino; — (05.1’3 + bi)ai>qm(m)q5(5)

WS {(a+0.5) Ina — ((bi) + 0.5(x2))ai }
ieP

+ 3 {(a+0.5)na; — (b +0.5(2?))a }
iepPe (12)

In g3(b) o<(Inp(a|a, b) + Inp(blp, q))4. ()

o> {=bile) + (p— 1) Inb; — gb;} 19)
i€EP
from which we can readily arrive at
q(b) = [ [ Gammdbi|p, ;) (20)
i€P
where
Gi = q+ (a;)

In summary, the variational Bayesian inference consists of

successive update of the approximate posterior distdbasti
for hidden variablez, «, «, andb. Some of the expectations
and moments used during the update are summarized as

where in(a), the terms inside the summation are partitioned

into two subsetsP and P° because{b;,i € P} are de-

(i) = T

(F) = 1 + i 7

terministic parameters whose values are given in (6), whitehere ;; denotes theth element ofu, and ¢; ; denotes the
{b;,7 € P} are latent variables and thus we need to perforith diagonal element ob. We now summarize our algorithm
as follows.

the expectation over these hidden variables. The posigiior
has a form of a product of Gamma distributions

q(a) = | [ Gammaas|a, b;)

(13)
=1
with the parameterd andb; given by
i=a+05 (14)
. b; 5x2) ieP
5, = ( >+05<2:v1> Z'E (15)
b +0.5(x7) i€ P

3). Update of ¢,(v): The approximate posteriar, () can
be computed as

In g, (v) o<(Inp(yla, ) + Inp(yle, d)) g, (@)
m
x (5 +c— 1) In~vy

- (3 40w - A2 ) 1 1)

Partial Support Aided-SBL with Support Learning

1.

Given the current approximate posterior distributions
of go (), g, () andg;(b), updateg, (z) according to
(11).

Giveng,(z), ¢,(v) andg;(b), updateg, (c) accord-
ing to (13)—(15).

Giveng,(z), g. (), andg;(b), updateg, (y) accord-
ing to (17)—(18).

Giveng,(z), ¢.(c) andq,(v), updateg;(b) accord-
ing to (20).

Continue the above iteration unffils") — p(t=1 ||, <
¢, wheree is a prescribed tolerance value. Chogsé
as the estimate of the sparse signal.

IV. SIMULATION RESULTS

We now carry out experiments to illustrate the performance

of our proposed algorithm. The proposed algorithm is reférr
to as the support knowledge-aided sparse Bayesian learning
with support learning (SA-SBL-SL). Also, by placing fixed

It can be easily verified that~y) follows a Gamma distribution values to{b;} according to (5), a Bayesian variational method

q(v) = Gammay|¢c, d) (17)

can be readily developed (Details are omitted due to theespac
limitation) and is referred to as the support knowledgesdid



The success rate is computed as the ratio of the number of
successful trials to the total number of independent runs. A
i1 trial is considered successful if the normalized recovergre
—8—SA-SBL-SL . ~ 112 2 —6 ~
—sasainst| I-€. ||z —&||3/||z||5, is no greater than0~°, where# denotes
SBL the estimate of the true signal. Results are averaged over
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Fig. 1.
of the error set.

1000 independent runs, with the measurement matrix and the
sparse signal randomly generated for each run. It can be seen
that our proposed SA-SBL-SL method presents a substantial
performance advantage over the SA-SBL-NSL and the SBL
methods. The performance gain is primarily due to the fact
that the SA-SBL-SL method is able to learn the true support
from the partly erroneous knowledge. We also observe that
when a considerable amount of errors are present in the prior

(a). Success rates vs. the ratign; (b). Success rates vs. the sizeknowledge, the methods SA-SBL-NSL and MBP have no

advantage over the methods SBL and BP. To examine the
behavior of the SA-SBL-SL method more thoroughly, we fix
the number of elements in the sgtand increase the number

o ' ' [—=—sA-sBL-sL of elements in the error sdf. Fig. 1(b) depicts the success
1.2% _"_gg[SB'-‘NS'-- rates vs. the number of elements in the errorBewhere we
1—\"‘ -0~ MBPDN setm = 25, |S| = 12 and|E| varies from1 to 15. As can be
b ‘=A- BPDN seen from Fig., when a fairly accurate knowledge is avadlabl

the SA-SBL-NSL achieves the best performance. This is an
expected result since little learning is required at thigmpo
Nevertheless, as the number of elemeits, increases, the
SA-SBL-NSL suffers from substantial performance degrada-
tion. As compared with the SA-SBL-NSL, the SA-SBL-SL
method provides stable recovery performance throughilegrn
the values of{b;}, and outperforms all other algorithms when

010 2'0 3'0 4'0 50 prior knowledge contains a considerable amount of errors.
SNR We, however, notice that the proposed SA-SBL-SL method is
surpassed by the conventional SBL method when inaccurate

Fig. 2. NMSEs vs. the signal-to-noise ratio. information becomes dominant (e/d| = 15), in which case

even learning brings limited benefits and simply ignoring th

error-corrupted prior knowledge seems the best strategy.
sparse Bayesian learning with no support learning (SA-SBL-\we now consider the noisy case where the measurements
NSL). In our simulations, the parametgrandg are set to be gre contaminated by additive Gaussian noise. The nornaalize
p=0.1landg=0.1 mean-squared errors (NMSEs) as a function of signal-teenoi

Suppose thé(-sparse signal is randomly generated with thgtio (SNR) are plotted in Fig 2, where we set = 25,
support set of the sparse signal randomly chosen according,t — 50, K = 16, |S| = 12, and |E| = 6. The MBP-DN
a uniform distribution. The signals on the support set are is a noisy version of the MBP method [4]. We observe that
dependent and identically distributed (i.i.d.) Gauss@mdom the conventional SBL and BP-DN methods outperform their
variables with zero mean and unit variance. The measuremgsépective counterparts: SA-SBL-NSL and MBP-DN. This,
matrix A € R™*" is randomly generated with each entragain, demonstrates that SA-SBL-NSL and MBP-DN methods
independently drawn from Gaussian distribution with zergre sensitive to prior knowledge inaccuracies. On the other
mean and unit variance. The prior support informatin hand, the proposed SA-SBL-SL method which takes advantage
consists of two subsets? = SUE, whereS C T' denotes the of the support learning presents superiority over both the
subset containing the correct information about the suppatonventional SBL as well as the SA-SBL-NSL method.
and £ C T¢ is a subset comprised of false information. In
our simulations, the partition of and E' is unknown. We
compare our proposed algorithms with the conventionalsgpar
Bayesian learning (SBL), the basis pursuit (BP) method, andwe developed an improved sparse Bayesian learning method
the modified basis pursuit (MBP) method [1]. which is able to accommodate the prior support knowledge
We first consider the noiseless case. Fig. 1(a) plots thad learn the true support from partly erroneous infornmatio

success rates of respective algorithms vs. the ratio, where Numerical results show that our proposed algorithm ackieve
we setK = 16, n = 50, |S| = 12 and |E| = 8, |S| and|E| a significant performance improvement through learning the
denote the cardinality (size) of the sg&tand £, respectively. underlying true information from partly erroneous knowged

V. CONCLUSIONS
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