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Abstract— In this paper, we study the problem of sparse signal
recovery when partial but partly erroneous prior knowledge
of the signal’s support is available. Based on the conventional
sparse Bayesian learning framework, we propose an improved
hierarchical prior model. The proposed modeling constitutes a
three-layer hierarchical form. The first two layers, similar to the
conventional sparse Bayesian learning, place a Gaussian-inverse-
Gamma prior on the signal, while the third layer is newly added,
with a prior placed on the parameters {bi}, where {bi} are pa-
rameters characterizing the sparsity-controlling hyperparameters
{αi}. Such a modeling enables to automatically learn the true
support from partly erroneous information through learning the
values of the parameters{bi}. A variational Bayesian inference
algorithm is developed based on the proposed prior model.
Numerical results are provided to illustrate the performance of
the proposed algorithm.

Index Terms— Compressed sensing, sparse Bayesian learning,
prior support knowledge.

I. I NTRODUCTION

We study the problem of sparse signal recovery when prior
information on the signal’s partial support is available. In
practice, prior information about the support region of the
sparse signal may be obtained from the support estimate of
the previous time instant. This is particularly the case for
time-varying sparse signals whose support changes slowly
over time. For example, in the real-time dynamic MRI re-
construction, it was shown that the support of a medical
image sequence undergoes a small variation with the support
changes (number of additions and removals) less than2% of
the support size. The problem of sparse signal recovery with
partial support information was studied in several independent
and parallel works [1]–[3]. It has been observed by extensive
experiments [1]–[3] that the sparse recovery performance can
be significantly improved through exploiting the prior support
knowledge. Nevertheless, this performance improvement can
only be achieved when the prior knowledge of the signal’s
partial support is fairly accurate. Existing methods, e.g.[1]–
[3], suffer from severe recovery performance degradation or
even recovery failure in the presence of inaccurate prior knowl-
edge. In practice, however, the estimate of the signal’s support
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inevitably incurs errors. In this paper, we propose an improved
hierarchical prior model. The proposed modeling constitutes a
three-layer hierarchical form. The first two layers, similar to
the conventional sparse Bayesian learning, place a Gaussian-
inverse-Gamma prior on the signal, while the third layer is
newly added with a prior placed on the parameters{bi}.
Such a modeling enables to distinguish the true support from
erroneous support through learning the values of{bi}. We
resort to the variational inference methodology to performthe
Bayesian inference on the proposed three-stage hierarchical
model, and develop a new sparse Bayesian learning method
which has the ability to distinguish the true support from the
erroneous information.

II. H IERARCHICAL PRIOR MODEL

We consider the problem of recovering a sparse signalx ∈
R

n from noise-corrupted measurements

y = Ax+w (1)

whereA ∈ R
m×n (m < n) is the measurement matrix, and

w is the additive multivariate Gaussian noise with zero mean
and covariance matrixσ2I. Suppose we have partial but partly
erroneous knowledge of the support of the sparse signalx. The
prior knowledgeP can be divided into two parts:P = S ∪
E, whereS denotes the subset containing correct information
about the support andE denotes the error subset. If we letT
denote the true support ofx andT c denote the complement
of the setT , i.e.T ∪T c = {1, 2, . . . , n}, then we haveS ⊂ T ,
andE ⊂ T c. Note that the only prior information we have is
P . The partition ofS andE is unknown to us.

We develop a sparse signal recovery algorithm which has
the ability to distinguish the correct support from erroneous
information and thus can exploit the prior support information
in a more constructive way. To this objective, we will propose
a new hierarchical sparse Bayesian learning (SBL) model
which allows to learn the correct information from the partly
erroneous knowledge. Before we proceed, we first provide a
brief overview of the hierarchical model for the conventional
SBL method.



A. Overview of Hierarchical Models for Conventional SBL

In the conventional sparse Bayesian learning framework, a
two-layer hierarchical prior model was proposed to promote
the sparsity of the solution. In the first layer,x is assigned a
Gaussian prior distribution

p(x|α) =

n
∏

i=1

p(xi|αi) (2)

wherep(xi|αi) = N (xi|0, α
−1
i ), andα , {αi}, the inverse

variance (precision) of the Gaussian distribution, are non-
negative hyperparameters. The second layer specifies Gamma
distributions as hyperpriors over the hyperparameters{αi}, i.e.

p(α) =

n
∏

i=1

Gamma(αi|a, b) =
n
∏

i=1

Γ(a)−1baαa−1
i e−bαi (3)

whereΓ(a) =
∫

∞

0
ta−1e−tdt is the Gamma function, the pa-

rametersa andb used to characterize the Gamma distribution
are chosen to be very small values, e.g.10−4, in order to
provide non-informative hyperpriors over{αi}. As discussed
in [5], using a non-informative hyperprior allowsαi to become
arbitrarily large. As a consequence, the associated coefficient
xi will be driven to zero, thus yielding a sparse solution.
This mechanism is also referred to as the “automatic relevance
determination” mechanism which tends to switch off most of
the coefficients that are deemed to be irrelevant, and only keep
very few relevant coefficients to explain the data.

B. Proposed Hierarchical Models

When the value of the parameterb is relatively large, e.g.
b = 1, it can be readily observed from (3) that the hyperpriors
are no longer non-informative and now they encourage small
values of{αi}. In this case, an arbitrarily large value ofαi

is prohibited. As a result, the formulation of the two layer
hierarchical model does not result in a sparsity-encouraging
prior and therefore does not necessarily lead to a sparse
solution. This fact, however, inspires us to develop a new way
to incorporate the prior support information into the sparse
Bayesian learning framework. Specifically, instead of using a
common parameterb for all hyperparameters{αi}, we hereby
employ an individual parameterbi for each hyperparameter
αi, i.e.

p(α) =

n
∏

i=1

Gamma(αi|a, bi) =
n
∏

i=1

Γ(a)−1bai α
a−1
i e−biαi

(4)

Such a formulation allows us to assign different priors to
different coefficients. If a partial knowledge of the signal’s
support,P , is available, then the associated parameters of{bi}
can be set to a relatively large value, say 1, in order to place
a non-sparsity-encouraging prior on the corresponding coeffi-
cients, whereas the rest parameters of{bi} are still assigned
a small value, say10−4, to encourage sparse coefficients, that
is,

bi =

{

1 i ∈ P

10−4 otherwise
(5)

The above modified hierarchical model effectively integrates
the prior support information into the sparse Bayesian learning
framework. Nevertheless, the modified two-layer hierarchical
model which assigns fixed values to{bi} still lacks flexibility
to learn and adapt to the true situation. To address this issue,
we partition the parameters{bi} into two subsets:{bi, ∀i ∈
P}, and{bi, ∀i ∈ P c}, whereP c denote the complement ofP ,
i.e. P ∪P c = {1, 2 . . . , n}. For {bi, ∀i ∈ P c}, the parameters
are still considered to be deterministic and assigned a very
small value, i.e.

bi = 10−4 ∀i ∈ P c (6)

For {bi, ∀i ∈ P}, instead of assigning a fixed large value, we
model them as random parameters and place hyperpriors over
{bi, ∀i ∈ P}. Since{bi, ∀i ∈ P} are expected to be positive
values, suitable priors over{bi, ∀i ∈ P} are also Gamma
distributions:

Gamma(bi|p, q) = Γ(p)−1qpbp−1
i e−qbi ∀i ∈ P (7)

where p and q are parameters characterizing the Gamma
distribution. Their choice will be specified later in this paper.
In doing this way, the modeling constitutes a three-layer hierar-
chical form which allows to learn the parameters{bi, ∀i ∈ P}
in an automatic manner from the data, and therefore has
the ability to distinguish the correct support from erroneous
information.

III. VARIATIONAL BAYESIAN INFERENCE

We now proceed to perform variational Bayesian inference
based on the proposed hierarchical model. For notational
convenience, define

γ , σ−2

Following the conventional sparse Bayesian learning frame-
work [5], we place a Gamma hyperprior overγ:

p(γ) = Gamma(γ|c, d) = Γ(c)−1dcγc−1e−dγ (8)

where the parametersc and d are set to small values, e.g.
c = d = 10−4.

Let θ , {x,α, γ, b̄}, where b̄ , {bi, ∀i ∈ P} are hidden
variables as well since they are assigned hyperpriors and need
to be learned. We assume posterior independence among the
hidden variablesx, α, γ, and b̄, i.e.

p(x,α, γ, b̄|y) ≈q(x,α, γ, b̄)

=qx(x)qα(α)qγ(γ)qb̄(b̄) (9)

With this mean field approximation, the posterior distribution
of each hidden variable can be computed by minimizing
the Kullback-Leibler (KL) divergence while keeping other
variables fixed using their most recent distributions, which
gives

ln qx(x) =〈ln p(y,x,α, γ, b̄)〉qα(α)qγ(γ)qb̄(b̄)
+ constant

ln qα(α) =〈ln p(y,x,α, γ, b̄)〉qx(x)qγ(γ)qb̄(b̄) + constant

ln qγ(γ) =〈ln p(y,x,α, γ, b̄)〉qx(x)qα(α)qb̄(b̄)
+ constant

ln qb̄(b̄) =〈ln p(y,x,α, γ, b̄)〉qx(x)qα(α)qγ(γ) + constant



Details of this Bayesian inference scheme are provided below.
1). Update of qx(x): The variational optimization ofqx(x)

can be calculated as follows by ignoring the terms that are
independent ofx:

ln q(x) ∝〈ln p(y|x, γ) + ln p(x|α)〉qα(α)qγ(γ)

∝−
〈γ〉

2
(y −Ax)T (y −Ax)−

1

2
xT 〈D〉x (10)

We can easily verify thatq(x) follows a Gaussian distribution
with its meanµ and covariance matrixΦ given respectively
as

µ =〈γ〉ΦATy

Φ =
(

〈γ〉ATA+ 〈D〉
)−1

(11)

2). Update of qα(α): Similarly, the approximate posterior
qα(α) can be computed as

ln qα(α) ∝〈ln p(x|α) + ln p(α|a, b)〉qx(x)qb̄(b̄)

=

n
∑

i

〈

(a− 0.5) lnαi − (0.5x2
i + bi)αi

〉

qx(x)qb̄(b̄)

(a)
=

∑

i∈P

{

(a+ 0.5) lnαi − (〈bi〉+ 0.5〈x2
i 〉)αi

}

+
∑

i∈P c

{

(a+ 0.5) lnαi − (bi + 0.5〈x2
i 〉)αi

}

(12)

where in(a), the terms inside the summation are partitioned
into two subsetsP and P c because{bi, i ∈ P c} are de-
terministic parameters whose values are given in (6), while
{bi, i ∈ P} are latent variables and thus we need to perform
the expectation over these hidden variables. The posteriorq(α)
has a form of a product of Gamma distributions

q(α) =

n
∏

i=1

Gamma(αi|ã, b̃i) (13)

with the parameters̃a and b̃i given by

ã = a+ 0.5 (14)

b̃i =

{

〈bi〉+ 0.5〈x2
i 〉 i ∈ P

bi + 0.5〈x2
i 〉 i ∈ P c

(15)

3). Update of qγ(γ): The approximate posteriorqγ(γ) can
be computed as

ln qγ(γ) ∝〈ln p(y|x, γ) + ln p(γ|c, d)〉qx(x)

∝
(m

2
+ c− 1

)

ln γ

−

(

1

2
〈(y −Ax)T (y −Ax)〉qx(x) + d

)

γ (16)

It can be easily verified thatq(γ) follows a Gamma distribution

q(γ) = Gamma(γ|c̃, d̃) (17)

where

c̃ =
m

2
+ c

d̃ =d+
1

2
〈(y −Ax)T (y −Ax)〉qx(x) (18)

in which

〈(y −Ax)T (y −Ax)〉qx(x) = ‖y −Aµ‖22 + tr
{

ATAΦ

}

4). Update of qb̄(b̄): The variational optimization ofqb̄(b̄)
yields:

ln qb̄(b̄) ∝〈ln p(α|a, b) + ln p(b̄|p, q)〉qα(α)

∝
∑

i∈P

{−bi〈αi〉+ (p− 1) ln bi − qbi} (19)

from which we can readily arrive at

q(b̄) =
∏

i∈P

Gamma(bi|p, q̃i) (20)

where

q̃i = q + 〈αi〉

In summary, the variational Bayesian inference consists of
successive update of the approximate posterior distributions
for hidden variablesx, α, γ, andb̄. Some of the expectations
and moments used during the update are summarized as

〈αi〉 =
ã

b̃i
〈γ〉 =

c̃

d̃

〈x2
i 〉 = µ2

i + φi,i 〈bi〉 =
p

q̃i

whereµi denotes theith element ofµ, andφi,i denotes the
ith diagonal element ofΦ. We now summarize our algorithm
as follows.

Partial Support Aided-SBL with Support Learning

1. Given the current approximate posterior distributions
of qα(α), qγ(γ) andqb̄(b̄), updateqx(x) according to
(11).

2. Givenqx(x), qγ(γ) andqb̄(b̄), updateqα(α) accord-
ing to (13)–(15).

3. Givenqx(x), qα(α), andqb̄(b̄), updateqγ(γ) accord-
ing to (17)–(18).

4. Givenqx(x), qα(α) andqγ(γ), updateqb̄(b̄) accord-
ing to (20).

5. Continue the above iteration until‖µ(t)−µ(t−1)‖2 ≤
ǫ, whereǫ is a prescribed tolerance value. Chooseµ̂(t)

as the estimate of the sparse signal.

IV. SIMULATION RESULTS

We now carry out experiments to illustrate the performance
of our proposed algorithm. The proposed algorithm is referred
to as the support knowledge-aided sparse Bayesian learning
with support learning (SA-SBL-SL). Also, by placing fixed
values to{bi} according to (5), a Bayesian variational method
can be readily developed (Details are omitted due to the space
limitation) and is referred to as the support knowledge-aided



0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

m/n

S
u

c
c
e

s
s
R

a
te

 

 

SA−SBL−SL
SA−SBL−NSL
SBL
MBP
BP

0 5 10 15
0

0.2

0.4

0.6

0.8

1

|E|
S

u
c
c
e

s
s
R

a
te

 

 

SA−SBL−SL
SA−SBL−NSL
SBL
MBP
BP

(a) (b)

Fig. 1. (a). Success rates vs. the ratiom/n; (b). Success rates vs. the size
of the error set.
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Fig. 2. NMSEs vs. the signal-to-noise ratio.

sparse Bayesian learning with no support learning (SA-SBL-
NSL). In our simulations, the parametersp andq are set to be
p = 0.1 andq = 0.1.

Suppose theK-sparse signal is randomly generated with the
support set of the sparse signal randomly chosen according to
a uniform distribution. The signals on the support set are in-
dependent and identically distributed (i.i.d.) Gaussian random
variables with zero mean and unit variance. The measurement
matrix A ∈ R

m×n is randomly generated with each entry
independently drawn from Gaussian distribution with zero
mean and unit variance. The prior support informationP
consists of two subsets:P = S∪E, whereS ⊂ T denotes the
subset containing the correct information about the support,
and E ⊂ T c is a subset comprised of false information. In
our simulations, the partition ofS and E is unknown. We
compare our proposed algorithms with the conventional sparse
Bayesian learning (SBL), the basis pursuit (BP) method, and
the modified basis pursuit (MBP) method [1].

We first consider the noiseless case. Fig. 1(a) plots the
success rates of respective algorithms vs. the ratiom/n, where
we setK = 16, n = 50, |S| = 12 and |E| = 8, |S| and |E|
denote the cardinality (size) of the setS andE, respectively.

The success rate is computed as the ratio of the number of
successful trials to the total number of independent runs. A
trial is considered successful if the normalized recovery error,
i.e. ‖x− x̂‖22/‖x‖

2
2, is no greater than10−6, wherex̂ denotes

the estimate of the true signalx. Results are averaged over
1000 independent runs, with the measurement matrix and the
sparse signal randomly generated for each run. It can be seen
that our proposed SA-SBL-SL method presents a substantial
performance advantage over the SA-SBL-NSL and the SBL
methods. The performance gain is primarily due to the fact
that the SA-SBL-SL method is able to learn the true support
from the partly erroneous knowledge. We also observe that
when a considerable amount of errors are present in the prior
knowledge, the methods SA-SBL-NSL and MBP have no
advantage over the methods SBL and BP. To examine the
behavior of the SA-SBL-SL method more thoroughly, we fix
the number of elements in the setS and increase the number
of elements in the error setE. Fig. 1(b) depicts the success
rates vs. the number of elements in the error setE, where we
setm = 25, |S| = 12 and |E| varies from1 to 15. As can be
seen from Fig., when a fairly accurate knowledge is available,
the SA-SBL-NSL achieves the best performance. This is an
expected result since little learning is required at this point.
Nevertheless, as the number of elements,|E|, increases, the
SA-SBL-NSL suffers from substantial performance degrada-
tion. As compared with the SA-SBL-NSL, the SA-SBL-SL
method provides stable recovery performance through learning
the values of{bi}, and outperforms all other algorithms when
prior knowledge contains a considerable amount of errors.
We, however, notice that the proposed SA-SBL-SL method is
surpassed by the conventional SBL method when inaccurate
information becomes dominant (e.g.|E| = 15), in which case
even learning brings limited benefits and simply ignoring the
error-corrupted prior knowledge seems the best strategy.

We now consider the noisy case where the measurements
are contaminated by additive Gaussian noise. The normalized
mean-squared errors (NMSEs) as a function of signal-to-noise
ratio (SNR) are plotted in Fig 2, where we setm = 25,
n = 50, K = 16, |S| = 12, and |E| = 6. The MBP-DN
is a noisy version of the MBP method [4]. We observe that
the conventional SBL and BP-DN methods outperform their
respective counterparts: SA-SBL-NSL and MBP-DN. This,
again, demonstrates that SA-SBL-NSL and MBP-DN methods
are sensitive to prior knowledge inaccuracies. On the other
hand, the proposed SA-SBL-SL method which takes advantage
of the support learning presents superiority over both the
conventional SBL as well as the SA-SBL-NSL method.

V. CONCLUSIONS

We developed an improved sparse Bayesian learning method
which is able to accommodate the prior support knowledge
and learn the true support from partly erroneous information.
Numerical results show that our proposed algorithm achieves
a significant performance improvement through learning the
underlying true information from partly erroneous knowledge.
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